想必大家都听说过美国沃尔玛连锁超市“啤酒与尿不湿”的故事。为什么沃尔玛超市里会把婴儿的尿不湿和啤酒摆放在一起售卖呢?
因为超市发现尿不湿和啤酒的购买峰值曲线有极大的相似性,观察得知,美国家庭中母亲在家照顾孩子,就会让父亲下班后买尿不湿回家,而男士来到超市后习惯于给自己买上一罐啤酒。那么如果将啤酒放在尿不湿附近,将有很大概率提高啤酒的销售量。实践证明确是如此。
其实,这种通过研究已经产生的数据,将不同标的关联起来并挖掘二者之间联系的分析方法利用关联性分析法,做好数据价值挖掘,提升营销效率,就叫做关联分析法,也就是商场和电商领域的“购物篮分析”。
而这种数据关联的分析思维不仅仅可以使用在商品的售卖方面,研究的对象包含范围越广,表面上没有什么相关性、但是实际上有潜在的内关联价值的事物就越多。透过数据去挖掘这些关联规则就可以让商家制定相应的营销策略来提高销售量、让交通部门调整交通信号时长来治理交通、让政府制定有针对性的政策来促进经济等等。
今天DataHunter数猎哥就来说说什么是关联分析,关联分析可以应用在哪些地方,以及如何做好商品的关联分析。
一、什么是关联分析?
关联就是反映某个事物与其他事物之间相互依存关系,而关联分析是指在交易数据中,找出存在于项目集合之间的关联模式,即如果两个或多个事物之间存在一定的关联性,则其中一个事物就能通过其他事物进行预测。通常的做法是挖掘隐藏在数据中的相互关系,当两个或多个数据项的取值相互间高概率的重复出现时,那么就会认为它们之间存在一定的关联。
换句话说,两项或多项属性之间存在关联,那么其中一项的属性值就可以依据其他属性值进行预测。简单地来说,关联规则可以用这样的方式来表示:A→B,其中A被称为前提或者左部(LHS),而B被称为结果或者右部(RHS)。如果我们要描述关于尿布和啤酒的关联规则(买尿布的人也会买啤酒),那么我们可以这样表示:买尿布→买啤酒。
关联规则是数据挖掘中的一个重要分支,其主要研究目的是从各种数据集中发现模式、相关性、关联或因果结构。关联规则有形如X→YX→Y的蕴含表达式,其中X和Y是不相交的项集,即X∩Y=X∩Y=。
二、关联分析可以应用在哪些地方?
一些行业的关联规则十分清晰,例如人口普查、医疗诊断、甚至人类基因组中的蛋白质序列。在关联销售宝贝的价格规律,卖家改进关联营销策略方面,关联分析法的适用性尤为突出。
关联销售在具体营销操作中,往往会使用一种商品作为引入商品,另一种商品作为利润商品,营销人员往往会认为引入商品应当是低价的一种,那么是否女装类目中存在此类规律呢?
如果将关联比例大于10%的关联商品和结果商品的类目均价互相比较,就会发现既有用半身裙、小背心、雪纺衫之类的相对低价商品,关联至衬衫、裤子、连衣裙等相对高价商品的记录,也有用衬衫、短外套、连衣裙、西装等相对高单价商品,关联至裤子、连衣裙、T恤等相对低单价商品的记录,而且两种情况的数量基本一致。该分析结果告诉我们,至少在女装类目中,关联销售更多是基于买家的内在需求以及商品的性质、特征等而出现,并没有什么特定的低价导入、高价关联之类的规律存在。
在今天主要探讨的商品销售这个目标上,“超市购物篮”数据的研究可以作为研究关联规则挖掘的一个典型的例子。不仅在线下超市,电商卖家的“满就送”、“多加一件包邮”等形式促销,也是商品关联销售思维演化来的。
但他们忽略了关联销售最重要的一个环节,就是消费者心理最想要什么东西,以及可以接受的心理价位是什么?这就需要对大量商品记录数据做分析,提取出能够反映顾客偏好的有用的规则。
如今疫情尚没有宣告终结,超市门店生意仍处困境,线上流量红利竞争持续,竞争的层面也在不断深化,已经从最基本的增加PV、提升PR、制造爆款……扩展到提升客单价、重购率,培养核心客户群等方面。在这样的情况下,做好关联分析就会让你的企业在竞争中多一个抓手。具体而言,他可以帮助店铺实现以下营销目的:
1.提升页面浏览率:由于同一页面中会涉及到多个商品,当这些商品的关联性较强时,就会有效提升该页面以及其关联商品页面的PV。
2.给用户提供更多选择:一个消费者不管通过什么流量渠道进入店铺商品页都会有一定原因,而提供其真正具有购买需求的关联商品信息五无疑会增加客户浏览的时间,给客户提供更多的选择,从而大大增加留住客户的比率,而这也就意味着更高的转化率和客单价!
3.提升利润商品的展现机会:现在电商卖家对做爆款是又爱又恨,爱的是他能带来流量,恨的是他带走了利润,其实,只要做好关联销售,将爆款商品和利润商品有效组合起来,就能获得流量和利润的双丰收!
除此以外,关联技术不但在商业领域被广泛应用,在医疗、保险、电信和证券等领域也得到了有效的应用。
三、如何依据数据做好关联分析?
1.关联规则的常用指标
分析事物关联关系需要将众多复杂的线索的拆解清晰,量化为对工作有用的指标,在关联分析的最开始,我们往往需要